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How many electrons are needed to flip a local spin?

Wonkee Kim, R.K. Teshima, and F. Marsiglio
Theoretical Physics Institute and Department of Physics,

University of Alberta, Edmonton, Alberta, Canada, T6G 2J1

(Dated: October 31, 2004)

Considering the spin of a local magnetic atom as a quantum mechanical operator, we illustrate
the dynamics of a local spin interacting with a ballistic electron represented by a wave packet. This
approach improves the semi-classical approximation and provides a complete quantum mechanical
understanding for spin transfer phenomena. Sending spin-polarized electrons towards a local mag-
netic atom one after another, we estimate the minimum number of electrons needed to flip a local
spin.

PACS numbers: 72.25.-b, 73.23.Ad, 73.63.-b

Electrons generally interact with magnetic atoms
through a spin-flip interaction. For example, this is a
fundamental mechanism for spin transfer [1, 2] from spin-
polarized electrons to a magnetic moment in a ferromag-
net [3, 4, 5]. Spin transfer results in a classical torque
exerted on the magnetic moment and, thus, enables us
to control a local structure in a ferromagnetic film. This
picture is semi-classical and seems to work well n a practi-
cal sense [6, 7, 8, 9]. However, this view also causes some
conceptual difficulties, and cannot answer fundamental
questions associated with spin transfer. For example, it
seems intuitive that the stronger the spin-flip interaction
is, the easier it is to flip a local spin through the inter-
action. However, a more rigorous quantum mechanical
treatment of the problem will illustrate that this intu-
ition is incorrect.

The goals in this paper are following: (1) we scrutinize
the physics of spin transfer between an incoming elec-
tron and a localized magnetic atom with spin S, i.e. we
calculate the expectation value of the local spin opera-
tor as a function of time (t) and illustrate the physics in
detail. (2) We provide an estimation of how many elec-
trons are needed to flip the local spin by sending spin-
polarized electrons one after another with an interval suf-
ficiently long that no interference between two electrons
occurs. For illustrative purposes, we consider spin values
of S = 1/2, 1, and 3/2 to represent the local spin.

Imagine a magnetic atom residing at the origin of the
X axis with spin pointing to the negative Z axis. Its spin
state can be represented by |−S〉 at t = 0. We consider a
normalized wave packet φ of an electron with spin along
the positive Z direction away from the origin. Then, the
total wave function is initially Ψ = φ|+〉| − S〉, where
|+〉 is the spin state of an incoming electron. Since the
local atom is neutral, the Coulomb interaction will not be
included. This problem can be set up in one dimension.

The Hamiltonian we consider is

H =
p2

2m
− 2J0σ · Sδ(x) (1)

where p2/2m is the kinetic energy of the incoming elec-
tron, σ is the electron spin operator, and J0 (> 0) is the
coupling of the spin-flip interaction. We use units such
that h̄ = c = 1. Let us introduce λ/a = 2mJ0, where a
is a typical length scale in the problem and will be set to
unity. The initial wave packet is normalized and given
by φ(x) = (2πα)−1/4eik0(x+x0)e−(x+x0)

2/4α. Such a wave
packet describes an ”electron” with mean position −x0

and mean momentum k0. The uncertainties associated
with the packet are ∆x0 =

√
2α and ∆k0 = 1/

√
2α. In

order to calculate the expectation value of the Z com-
ponent of the local spin 〈Sz(t)〉 = 〈Ψ(x, t)|Sz |Ψ(x, t)〉,
where 〈· · ·〉 means an integration over x, we need to know
the time evolution of the total wave function Ψ(x, t).
Since the initial state Ψ(x, 0) is not an eigenstate of the
Hamiltonian because of the spin-flip coupling, Ψ(x, 0)
should be decomposed into two channels depending on
the total spin j± = S ± 1/2.

The Schrödinger equation to solve is

∂2
xΨ(x) + 2mEΨ(x) =

{

−Sλδ(x)Ψ(x) for j+
(S + 1)λδ(x)Ψ(x) for j−

(2)
A wave function with j+ sees a potential well while a
wave function with j− feels a potential barrier. The time
evolution of each channel is different because the eigen-
states of each equation are different, and the overlap of
the two wave functions determines the dynamics of the
local spin as we will soon show. The time evolution of
the wave function is a combination of the time evolutions
of the two channels of j±:

Ψ(x, t) = φ+(x, t)
1√

2S + 1
|j+,−S + 1/2〉+ φ−(x, t)

√

2S

2S + 1
|j−,−S + 1/2〉 (3)
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where φ±(x, t) is the time evolution of the wave packet
in the presence of the well/barrier, and φ±(x, 0) = φ(x).
The Z component of the total spin is conserved to be
−S + 1/2. The expectation value of the Z component of
the local spin as a function of time is calculated to be

〈Sz(t)〉 = − S

(2S + 1)2
{

4S2 + 4S + 4Re [〈φ+|φ−〉] − 3
}

.

(4)
Using the Schwartz inequality: |〈φ+|φ−〉|2 ≤ 1, we find
a constraint of 〈Sz(t)〉 as follows: −S ≤ 〈Sz(t)〉 ≤
−S

[

4S2 + 4S − 7
]

/(2S + 1)2. This constraint is more
restrictive than the obvious one that requires a max-
imum change in the spin to be unity since the spin
of the incoming electron is 1/2. Note that there al-
ways exists a probability that the state of the local
spin remains unchanged even after the interaction; there-
fore, actual values of 〈Sz(t)〉 should be evaluated quan-
tum mechanically. We can also determine the local
spin state from the total wave function Ψ(t). The
spin state is written as a1| − S〉 + b1| − S + 1〉, where
|a1|2 =

{

1 + 4S2 + 4SRe [〈φ+|φ−〉]
}

/(2S + 1)2 and
|b1|2 = 4S {1 − Re [〈φ+|φ−〉]} /(2S + 1)2. It is straight-
forward to show that 〈Sz(t)〉 = −S + |b1|2. Without loss
of generality we can assume that a1 and b1 are real.

As mentioned for 〈Sz(t)〉, we need to solve Eq. (2) be-
cause the time evolution of the wave packet φ± will be
governed by the solutions of this equation. Let us con-
sider a Hamiltonian H± = p2/2m+ (λ±/2m)δ(x), where
λ+ = −Sλ for the j+ channel while λ− = (S + 1)λ for
the other channel. This Hamiltonian could be treated
as a scattering problem for E > 0 to obtain an asymp-
totic solution which is plane wave-like. Note that the
asymptotic solution does not describe the detailed dy-
namics of the local spin. However, it implies important
physics associated with the problem. The asymptotic so-
lution is ηk(x) =

[

eikx +R±e
−ikx

]

Θ(−x) +T±e
ikxΘ(x),

where Θ(x) is a step function. The momentum is well-
defined while the position cannot be; namely, ∆k = 0
but ∆x = ∞. The transmittance and the reflectance
are determined by the boundary condition at x = 0,
and they are |T±|2 = 4/

[

4 + (λ±/k)
2
]

and |R±|2 =

(λ±/k)
2/

[

4 + (λ±/k)
2
]

. It is worth mentioning that
|T±|2 and |R±|2 depend only on (λ±/k)

2; furthermore,
for large λ±/k both channels give unit reflectance and
almost zero transmission. As we showed in Eq. (4),
the dynamics of the local spin depends on the overlap
of the two wave functions φ+(x, t) and φ−(x, t). The
above exercise indicates that for a large λ, φ± would
not differ significantly from each other. In this instance,
Re [〈φ+|φ−〉] ≈ 1; consequently, 〈Sz〉 ≈ −S. In other
words, if the spin-flip coupling is very large, it becomes
more difficult to flip a local spin. This seems to oppose
the semi-classical understanding but we will show that
this is the case. We should mention that the λ±/k scal-
ing in |T±|2 and |R±|2 takes place because of zero un-

certainty in the momentum (∆k = 0) for a plane wave.
Rigorously speaking, however, one cannot expect such a
perfect scaling when a wave packet with ∆k 6= 0 is used
instead of a plane wave.

We obtain the eigenstates and the corresponding eigen-
values of H± introducing a box of the length 2L (−L ≤
x ≤ L) with a periodic boundary condition: ψ(−L) =
ψ(L) and ∂xψ(−L) = ∂xψ(L), where ψ(x) is an eigen-
state of H± with an eigenvalue E±. Since the potential
is symmetric about x = 0, the eigenstates are either even
or odd; ψe,k±

(x) or ψo,p±
(x). We found [10] for the even

solution

ψe,k±
(x) =

1
√

Nk±

[

cos(k±x) +
λ±
2k±

sin(k±|x|)
]

(5)

where Nk±
= L

[

1 + (λ±/2k±)2
]

+ λ±/2k
2
±, and for the

odd solutions ψo,p±
(x) = sin(p±x)/

√
L. The correspond-

ing eigenvalues are Ek±
= k2

±/2m, where k± is a solu-
tion of tan(k±L) = λ±/2k±, while Ep±

= p2
±/2m with

p± = n±π/L (n± is an integer). Since the potentials
do not affect the odd solutions, the dynamics of the lo-
cal spin is determined only by the even solutions. For
λ+ (< 0), the number of the even states decreases by
one and a single bound state occurs for E < 0 to keep
the total number of eigenstates unchanged. As long as
we initially put a wave packet far away from x = 0, the
bound state does not participate in the time evolution of
the wave packet [11]. Now the time evolution of φ±(x, t)
for both channels can be written as

φ±(x, t) =
∑

k±

e−iEk±
tCk±

ψe,k±
(x)+

∑

p±

e−iEp±
tCp±

ψo,p±
(x)

(6)
where Ck±

= 〈ψe,k±
|φ〉 and Cp±

= 〈ψo,p±
|φ〉. Using

these expressions we obtain the overlap between φ+ and
φ− as follows:

〈φ+|φ−〉 = (2S + 1)λ
∑

k±

ei(Ek+
−Ek−

)t

k2
− − k2

+

〈φ|ψe,k+
〉

√

Nk+

〈ψe,k−
|φ〉

√

Nk−

+
1

2

[

1 − e−(k0/∆k0)2−(x0/∆x0)
2
]

, (7)

where ∆k0 and ∆x0 are the uncertainties associated with
the initial wave packet. Note that the time dependence
of 〈φ+|φ−〉 is determined only by the even solutions while
the odd solutions contribute to a constant, which would
be close to 1/2 if the momentum or the position is well de-
fined and finite initially. Since we consider a wave packet
far away from the origin with a finite mean position at
t = 0, the second term in Eq. (7) is approximately 1/2
to high precision.

Fig. 1 illustrates the time evolution of the wave packet
for the j− channel away from a local spin of S = 1/2.
We introduce a dimensionless time τ = t/2ma2. Initially
the wave packet is located at x = −x0 (x0 = 100) with
a mean momentum k0 = 1. We choose α to be 10 and L
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to be 103 ∼ 104. As long as L≫ x0, L is not important.
The wave packet does not interact with the potential with
λ− = (S + 1)λ = 3.45 until τ ≃ 30. At τ = 50, the po-
tential strongly scatters the wave packet and a part of
the packet is transmitted to the other side of the poten-
tial. After τ = 150, the reflected and transmitted parts
of the packets freely move away from the potential in the
opposite direction as indicated by the arrows. The time
evolution for j+ is similar and not shown in this figure.
In the insert, we show 〈Sz(τ)〉 as a function of τ . It in-
creases from 〈Sz(0)〉 = −0.5 to 〈Sz(150)〉 ≃ −0.01, and
then becomes saturated. The saturation is expected be-
cause after τ = 150 the wave packet does not interact
with the potential any more. In fact, the mean momen-
tum determines when 〈Sz〉 becomes saturated. We define
the saturation value of 〈Sz〉 as S1, which depends on k0

and λ. It is this value that we use to estimate how many
spin-polarized electrons are needed to flip a local spin as
we will show later.

It is possible to control the mean momentum reason-
ably well while the spin-flip coupling is uncontrollable
and even not well known experimentally. In this sense, it
does not seem possible to pinpoint how many electrons
are needed to flip a specific local spin. Nevertheless, it is
theoretically feasible to estimate the minimum number of
electrons to flip a local spin by calculating the maximum
value of S1 denoted as Smax

1 . To this end, we evaluate S1

as a function of k0 and λ because a scaling relation is not
expected to hold for the wave packet with the momentum
uncertainty (1/

√
2α). We choose the same value of α as

before. Fig. 2 is a contour plot of S1 in the (λ, k0) plane.
Interestingly, we found a λ/k0 scaling holds fairly well in
this case as well. Moreover, Smax

1 of a local spin S = 1/2
is approximately zero for λ ≃ 2.3k0; for example, λ = 6.9
with k0 = 3. We obtained the same scaling behavior
for other values of α. Note that this value of Smax

1 is
smaller than the mathematical upper bound based on the
Schwartz inequality, which is a half for S = 1/2. Looking
in particular at the lower part of Fig. 2, we know that for
a given k0, S1 decreases with increasing λ. This clearly
indicates that if the coupling is too large, it becomes more
and more difficult to flip the local spin, which is consis-
tent with our early analysis. We plot S1 for the local
spin S = 1 and S = 3/2 in Fig. 3 as a function of λ/k0

with α = 10. There is also a similar scaling behavior in
S1 while different values of λ/k0 give Smax

1 . For S = 1,
the maximum value is Smax

1 ≃ −0.556 (< −1/9) along
λ ≃ 1.4k0, and Smax

1 ≃ −1.126 (< −3/4) along λ ≃ k0

for S = 3/2, where −1/9 and −3/4 are the mathematical
upper bounds for S = 1 and S = 3/2, respectively.

Now consider the spin-polarized electrons sent towards
the local spin one after another over an interval τ0 which
is sufficiently long so as to prevent any interference be-
tween two electrons. That is, we wait long enough before
sending the second electron so that the first has cleared
away from the region of interest, and left the local spin in

a state a1|−S〉+b1|−S+1〉, where a1 and b1 have acquired
saturated values after a time τ0 ≈ 200 (see Fig. 1). Note
that this time can be shorter if we increase the mean mo-
mentum, for example. At τ = τ0, the total wave function

is φ|+〉
[

a1(τ0)| − S〉 + b1(τ0)| − S + 1〉
]

. Since |+〉| − S〉
and |+〉| − S + 1〉 are not eigenstates of the Hamiltonian
in general, we need to decompose each state into two
channels for j± with appropriate Clebsch-Gordan coeffi-
cients [12]. Later the spin state of the local spin will be
a2|−S〉+b2|−S+1〉+c2|−S+2〉. The coefficients a2, b2,
and c2 can be determined from the total wave function,
and they turn out to be functions of a1 and b1. Repeat-
ing this procedure we can calculate the expectation value
of the local spin after sending the n-th electron.

Using S = 1/2, 1 and 3/2 we illustrate the procedure
and estimate the minimum number of electrons to flip a
local spin. The expansion for an arbitrary spin can be
done systematically. For a local spin S = 1/2, j+ = 1 and
j− = 0. After the first electron interacts with the local
spin, the total wave function is Ψ = 1√

2
φ1|10〉+ 1√

2
φ0|00〉.

The spin state of the atom is a1| − 1/2〉+ b1|1/2〉, where
a2
1 = 1/2−S1 and b21 = 1/2+S1, and 〈Sz〉 = S1. When we

send the second electron, Ψ = 1√
2
a1φ1|10〉+ 1√

2
a1φ0|00〉+

b1φ1|11〉. The local state becomes a2| − 1/2〉 + b2|1/2〉,
where a2

2 = a4
1 and b22 =

(

a2
1 + 1

)

b21, and S2 = 1/4+S1−
S2

1 , where Sn is 〈Sz〉 after the n-th electron. The third
electron gives S3 = 1/4 + (S1 + S2) /2 − S1S2, and the
n-th electron leaves Sn = 1/4+(S1 + Sn−1) /2−S1Sn−1.
We can express Sn in terms of S1 as follows:

Sn =
1

2
−

(

1

2
− S1

)n

. (8)

Using a similar procedure we obtain Sn for S = 1 and
S = 3/2

Sn = 1 − n (−S1)
n−1

+ (n− 2) (−S1)
n

for S = 1

Sn =
3

2
− (−S1 − 1/2)

n−1
[

(3 + 4n)S1 + 3(1 + 4n)/2
]

− 6 (−4S1/3 − 1)
n

for S = 3/2 (9)

Note that S0 = −S, which means that initially the lo-
cal spin state is | − S〉 while Sn → S as n increases
for a given S1; in other words, the local spin becomes
flipped. Mathematically speaking, Sn = S only when
n = ∞. This is because there always exists a quan-
tum mechanical possibility that the spin state remains
unchanged even after the spin-flip interaction. Never-
theless, when Sn becomes sufficiently close to S, we can
claim that the local spin has flipped. When S1 = Smax

1 ,
we can approximate Smax

n ≃ S − 2S e−βSn, where
β1/2 ≃ 0.7, β1 ≃ 0.35, and β3/2 ≃ 0.23. Let us define
the minimum number NS to be the number which satis-
fies, for example, 2S e−βSNS = 10−5. Then we evaluate
NS = [5 ln(10) + ln(2S)] /βS. Our estimation shows that
the minimum number of the spin-polarized electrons to
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flip a local spin of 1/2 is about 16; namely, N1/2 ≃ 16.
For S = 1, N1 ≃ 35 while N3/2 ≃ 55 for the local spin of
3/2. Therefore, less electrons are needed to flip a smaller
spin as one might expect.

In summary, using straightforward quantum mechan-
ics, we have studied the time evolution of the spin of a
local magnetic atom under a spin-flip interaction with
an incoming electron. This treatment goes beyond the
semi-classical approximation, which considers the local
moment as a classical vector. The expectation value of
the spin operator has been evaluated using the wave func-
tion of the electron, which is the solution of the time
dependent Schrödinger equation. Sending spin-polarized
electrons towards a local magnetic atom one after an-
other, we also provide an estimate of how many elec-
trons are needed to flip a local spin. For an experimen-
tal realization of our estimate, we suggest a setup where
a magnetic atom is fixed at the hub of a wheel, while
spin-polarized electrons are sent towards the atom along
orthogonal spokes in the wheel.
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FIG. 1: (Color online) The time evolution of the wave packet
for the j

−
channel. The other channel shows similar behavior

and is not plotted. The local spin is 1/2. The inset describes
dynamics of the local spin. After τ = 150, 〈Sz〉 becomes
saturated.
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FIG. 2: (Color online) Contour plot of S1 for S = 1/2 in
the (λ, k0) plane. Note a (λ/k0) scaling behavior with a
maximum value of S1 along λ = 2.3k0.
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FIG. 3: (Color online) S1 as a function of λ/k0 for S = 1
and S = 3/2, for various values of k0. The maximum value
of S1 is about −0.556 and −1.126 for S = 1 and S = 3/2,
respectively.


